Investigation of Co3O4 and LaCoO3 Interaction by Performing N2O Decomposition Tests under Co3O4-CoO Transition Temperature

Author:

Iwanek (nee Wilczkowska) Ewa M.,Liotta Leonarda F.ORCID,Pantaleo GiuseppeORCID,Krawczyk Krzysztof,Gdyra Ewa,Petryk Jan,Sobczak Janusz W.ORCID,Kaszkur ZbigniewORCID

Abstract

The research presented in this paper addresses the question: How does the addition of a small amount of LaCoO3 impact the activity of a Co3O4 catalyst? By testing such a catalyst in N2O decomposition under conditions at which the thermal decomposition of Co3O4 to CoO is possible, one gains unique insight into how the two phases interact. The activity of such a catalyst increases in the entire studied temperature range, unlike the activity of the undoped cobalt catalyst which is lower at 850 °C than at 800 °C due to the reduction of Co3O4 to CoO. XRD measurements showed that CoO was also the main cobalt oxide present in the Co3.5La catalyst after operating at 850 °C, as did the XPS measurements, but there was no drop of activity associated with this change. The influence of NO, O2 and H2O on the activity of the new catalyst, Co3.5La, was determined. Lack of positive effect of NO, a known oxygen scavenger, on the activity was noticed at all temperatures, showing that the effect of LaCoO3 is probably due to increased oxygen desorption. Temperature programed oxidation (TPO) tests showed that the beneficial effects of the presence of LaCoO3 on the activity of cobalt oxide at 850 °C were probably caused by enhanced diffusion of O2− anions through the entire catalyst, which facilitates desorption of oxygen molecules from the surface.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3