Enhanced Visible Light Photocatalytic Degradation of Methylene Blue by CdS-ZnS-BiPO4 Nanocomposites Prepared by a Solvent-Assisted Heating Method

Author:

Tsai Hsin-Chan,Peng Yu-Hui,Wen Po-Yu,Wu Tsunghsueh,Lin Yang-WeiORCID

Abstract

In this study, a ternary CdS-ZnS-BiPO4 nanocomposite, synthesized by a solvent-assisted heating method, demonstrated the highest visible light-induced photocatalysis towards the degradation of methylene blue (MB) when comparing with BiPO4, CdS-BiPO4, and ZnS-BiPO4. Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) were used to characterize the prepared nanocomposites. From UV-DRS results, the energy band gap of the prepared BiPO4 structures was 4.51 eV. When CdS nanoparticles were deposited on BiPO4 surface by a solvent-assisted heating method, the prepared nanocomposites exhibited visible light-responsive photocatalytic degradation toward MB (20 ppm). At a molar ratio of Cd to Zn as 1:7, the prepared CdS-ZnS-BiPO4 nanocomposites exhibited the best photocatalytic activity in degrading 95% of MB dyes, out-performing pure BiPO4, CdS-BiPO4, and ZnS-BiPO4 due to its enhanced charge separation efficiency and the lowered carrier recombination from the efficient p-n junction of unprecedented ternary composites. The investigations on mechanism conclude that the major reactive species responsible for MB degradation are holes and oxygen radicals. For practicality, the degradation efficiency for different dyestuff (Fast Green FCF, Rhodamine 6G, Acid Blue 1, methyl orange, and methyl red) degradation in the different water matrix samples (pond water, seawater, and lake water) by the prepared CdS-ZnS-BiPO4 nanocomposites was evaluated.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3