Ab Initio Studies of Bimetallic-Doped {0001} Hematite Surface for Enhanced Photoelectrochemical Water Splitting

Author:

Simfukwe Joseph,Mapasha Refilwe Edwin,Braun Artur,Diale Mmantsae

Abstract

First-principles calculations based on density functional theory (DFT) were carried out to study the energetic stability and electronic properties of a bimetallic-doped α-Fe2O3 photoanode surface with (Zn, Ti) and (Zn, Zr) pairs for enhanced PEC water splitting. The doped systems showed negative formation energies under both O-rich and Fe-rich conditions which make them thermodynamically stable and possible to be synthesised. It is found that in a bimetallic (Zn, Ti)-doped system, at a doping concentration of 4.20% of Ti, the bandgap decreases from 2.1 eV to 1.80 eV without the formation of impurity states in the bandgap. This is favourable for increased photon absorption and efficient movement of charges from the valance band maximum (VBM) to the conduction band minimum (CBM). In addition, the CBM becomes wavy and delocalised, suggesting a decrease in the charge carrier mass, enabling electron–holes to successfully diffuse to the surface, where they are needed for water oxidation. Interestingly, with single doping of Zr at the third layer (L3) of Fe atoms of the {0001} α-Fe2O3 surface, impurity levels do not appear in the bandgap, at both concentrations of 2.10% and 4.20%. Furthermore, at 2.10% doping concentration of α-Fe2O3 with Zr, CBM becomes delocalised, suggesting improved carrier mobility, while the bandgap is altered from 2.1 eV to 1.73 eV, allowing more light absorption in the visible region. Moreover, the photocatalytic activities of Zr-doped hematite could be improved further by codoping it with Zn because Zr is capable of increasing the conductivity of hematite by the substitution of Fe3+ with Zr4+, while Zn can foster the surface reaction and reduce quick recombination of the electron–hole pairs.

Funder

The Copperbelt University and Ministry of Higher Education in Zambia through the Support to Science Technology and Engineering Project

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3