Anatomical Bone Characteristics of the Buccal Step Insertion Site for Mini-Screw Placement in Orthodontic Treatment: A CBCT Study

Author:

Derton Nicola1ORCID,Bellocchio Angela Mirea2,Ciancio Elia2,Barbera Serena2,Caddia Andrea3,Arveda Niki3,Nucera Riccardo2ORCID

Affiliation:

1. Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy

2. Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Orthodontics, School of Dentistry, University of Messina, 98125 Messina, Italy

3. Post-Graduate School of Orthodontics, University of Ferrara, 44121 Ferrara, Italy

Abstract

Background: To analyze the anatomical characteristics of a posterior area in the mandible localized distally to the second molars and extending in the vestibular direction toward the bony step, which we define as “buccal step”, in a patient with different skeletal patterns for mini-screw insertion. Methods: The sample included 85 CBCT (cone beam computed tomography) records selected from the digital archive. Analysis focused on the buccal step area. Sections were obtained in axial view using reference lines, and measurements of cortical and total bone were taken at specific points M0 (starting point, 6 mm apical from CEJc—cementoenamel junction crest), M2 (located 2 mm posterior to M0 in the apical direction), and M4 (positioned 4 mm posterior to M0 in the apical direction) in both directions. Six measurements were recorded for each scan root plane, assessing cortical and total bone depth. Results: The thickness of the bone increases toward the inside of the mouth at all tested sites (M0, M2, M4), which is good for placing mini-screws. Cortical bone thickness decreases toward the inside of the mouth, with no significant differences among the sites except for M0 vs. M4. People with a particular jaw shape (hypo-divergent) have a thicker cortical bone, indicating that facial structure affects bone thickness. Conclusions: The posterior buccal step insertion site has biomechanical advantages and reduces the risk of damaging roots during mini-screw insertions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3