Examination of Transmission Zeros in the MIMO Sensor-Based Propagation Environment Using a New Geometric Procedure

Author:

Pączko Dariusz1ORCID,Hunek Wojciech P.2ORCID

Affiliation:

1. Department of Mathematics and IT Applications, Opole University of Technology, 45-758 Opole, Poland

2. Department of Control Science and Engineering, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland

Abstract

In this paper, we propose the application of a new geometric procedure in order to calculate a set of transmission zeros of a propagation environment. Since the transmission zeros play a crucial role in modern communication systems, there is a need to apply the efficient solutions characterized by a maximum speed operation. It turns out that the classical method based on the Smith–McMillan factorization is time-consuming, so its contribution to the detection of transmission zeros could be unsatisfactory. Therefore, in order to fill the gap, we present a new algorithm strictly dedicated to the multivariable telecommunications systems described by the transfer-function approach. Consequently, a set of new achievements resulted, particularly in terms of computational efforts. Indeed, the proposed procedure allows us to overcome obstacles derived from technological limitations. The representative simulation examples confirm the great potential of this new method. Finally, it has been pointed out that the newly introduced geometric-originated approach has significantly reduced the computational burden. Indeed, for the randomly selected matrix of the 5×5 dimension describing the sensor-related propagation environment, two representative scenarios were performed in order to manifest the crucial properties. In the first scenario, the sets of multiple transmission zeros were analyzed, ultimately leading to intriguing results. The Smith–McMillan solution took three times longer to discover the mentioned sets. On the other hand, the second instance brought us the same result. Naturally, the discussed difference has increased as a function of the number of matrix elements. For the square matrices involving 100 components, we have observed the respective differences, both over QI=100 and QII=60. It should be emphasized that the finding derived from the Smith–McMillan factorization corresponds to the geometric-related approach in the context of some mechanisms. This is particularly visible when appointing the greatest common divisors.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3