Future Changes in Temperature and Precipitation over Northeastern Brazil by CMIP6 Model

Author:

Dantas Leydson G.ORCID,dos Santos Carlos A. C.ORCID,Santos Celso A. G.ORCID,Martins Eduardo S. P. R.ORCID,Alves Lincoln M.

Abstract

Global warming is causing an intensification of extreme climate events with significant changes in frequency, duration, and intensity over many regions. Understanding the current and future influence of this warming in northeastern Brazil (NEB) is important due to the region’s greater vulnerability to natural disasters, as historical records show. In this paper, characteristics of climate change projections (precipitation and air temperature) over NEB are analyzed using 15 models of Coupled Model Intercomparison Project Phase 6 (CMIP6) under four Shared Socioeconomic Pathways (SSPs: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) scenarios. By using the Taylor diagram, we observed that the HadGEM3-GC31-MM model simulates the seasonal behavior of climate variables more efficiently. Projections for NEB indicate an irreversible increase in average air temperature of at least 1 °C throughout the 21st century, with a reduction of up to 30% in annual rainfall, as present in scenarios of regional rivalry (SSP3-7.0) and high emissions (SSP5-8.5). This means that a higher concentration of greenhouse gases (GHG) will increase air temperature, evaporation, and evapotranspiration, reducing rainfall and increasing drought events. The results obtained in this work are essential for the elaboration of effective strategies for adapting to and mitigating climate change for the NEB.

Funder

Fundação de Apoio à Pesquisa do Estado da Paraíba

the Graduate Program in Meteorology (PPGMET) of the Federal University of Campina Grande

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference78 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Chen, Y., Goldfarb, L., Gomis, M.I., Matthews, J.B.R., and Berger, S. (2021). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. in press.

2. Drought under global warming: A review;Dai;WIREs Clim. Chang.,2011

3. Drought in Northeast Brazil-past, present, and future;Marengo;Theor. Appl. Climatol.,2017

4. Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan;Ahmed;J. Hydrol.,2019

5. Progress in semi-arid climate change studies in China;Huang;Adv. Atmos. Sci.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3