Abstract
Imaging is important in cancer diagnostics. It takes a long period of medical training and clinical experience for radiologists to be able to accurately interpret diagnostic images. With the advance of big data analysis, machine learning and AI-based devices are currently under development and taking a role in imaging diagnostics. If an AI-based imaging device can read the image as accurately as experienced radiologists, it may be able to help radiologists increase the accuracy of their reading and manage their workloads. In this paper, we consider two potential study objectives of a clinical trial to evaluate an AI-based device for breast cancer diagnosis by comparing its concordance with human radiologists. We propose statistical design and analysis methods for each study objective. Extensive numerical studies are conducted to show that the proposed statistical testing methods control the type I error rate accurately and the design methods provide required sample sizes with statistical powers close to pre-specified nominal levels. The proposed methods were successfully used to design and analyze a real device trial.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献