Radiomics and Artificial Intelligence in Uterine Sarcomas: A Systematic Review

Author:

Ravegnini GloriaORCID,Ferioli MartinaORCID,Morganti Alessio Giuseppe,Strigari Lidia,Pantaleo Maria Abbondanza,Nannini Margherita,De Leo AntonioORCID,De Crescenzo Eugenia,Coe Manuela,De Palma AlessandraORCID,De Iaco Pierandrea,Rizzo StefaniaORCID,Perrone Anna MyriamORCID

Abstract

Background: Recently, artificial intelligence (AI) with computerized imaging analysis is attracting the attention of clinicians, in particular for its potential applications in improving cancer diagnosis. This review aims to investigate the contribution of radiomics and AI on the radiological preoperative assessment of patients with uterine sarcomas (USs). Methods: Our literature review involved a systematic search conducted in the last ten years about diagnosis, staging and treatments with radiomics and AI in USs. The protocol was drafted according to the systematic review and meta-analysis preferred reporting project (PRISMA-P) and was registered in the PROSPERO database (CRD42021253535). Results: The initial search identified 754 articles; of these, six papers responded to the characteristics required for the revision and were included in the final analysis. The predominant technique tested was magnetic resonance imaging. The analyzed studies revealed that even though sometimes complex models included AI-related algorithms, they are still too complex for translation into clinical practice. Furthermore, since these results are extracted by retrospective series and do not include external validations, currently it is hard to predict the chances of their application in different study groups. Conclusion: To date, insufficient evidence supports the benefit of radiomics in USs. Nevertheless, this field is promising but the quality of studies should be a priority in these new technologies.

Funder

Fondazione Cassa di Risparmio in Bologna

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3