Effects of Low-Velocity-Impact on Facesheet-Core Debonding of Natural-Core Composite Sandwich Structures—A Review of Experimental Research

Author:

Ong Michael1,Silva Arlindo1ORCID

Affiliation:

1. Faculty of Engineering Product Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore

Abstract

Sandwich composites are often used as primary load-bearing structures in various industries like aviation, wind, and marine due to their high strength-to-weight and stiffness-to-weight ratios, but they are vulnerable to damage from Low-velocity-impact (LVI) events like dropped tools, hail, and birdstrikes. This often manifests in the form of Facesheet-Core-Debonding (FCD) and is often termed Barely-Visible-Impact-Damage (BVID), which is difficult to detect and can considerably reduce mechanical properties. In general, a balsa core sandwich is especially vulnerable to FCD under LVI as it has poorer adhesion than synthetic core materials. A cork core sandwich does show promise in absorbing LVI with low permanent indentation depth. This paper also reviews surface treatment/modification as a means of improving the adhesion of composite core and fiber materials: key concepts involved, a comparison of surface free energies of various materials, and research literature on surface modification of cork, glass, and carbon fibers. Since both balsa and cork have a relatively low surface free energy compared to other materials, this paper concludes that it may be possible to use surface modification techniques to boost adhesion and thus FCD on balsa or cork sandwich composites under LVI, which has not been covered by existing research literature.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3