Enhanced Degradation of Deltamethrin in Water through Ferrous Ion Activated Sulfite: Efficiency and Mechanistic Insights

Author:

Wan Ying123,Shang Fangze1,Yin Luming2,Wang Hantao1,Ping Yang1,Ding Jiaqi23,Wang Zongping2,Xie Pengchao2

Affiliation:

1. Power China Eco-Environmental Group Co., Ltd., Shenzhen 518101, China

2. School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

3. Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan 430010, China

Abstract

Deltamethrin’s global use as a potent insecticide against pests is well-established. However, the compound’s diverse levels of toxicity are increasingly under scrutiny, drawing significant attention to treatments of deltamethrin. Transition metal activation of sulfite is a promising technology for micropollutant degradation. In this study, iron-activated sulfite was used for the degradation of deltamethrin. The degradation effects and influencing factors and the underlying mechanism of deltamethrin degradation in the system were investigated. The degradation of deltamethrin was effectively achieved by the Fe (III)/sulfite system. The optimal reaction conditions at laboratory scale were determined to be an initial pH of 4, a Fe (III) concentration of 100 μM, and a HSO3− concentration of 1 mM, where the degradation rate was approximately 69.5%. Dissolved oxygen was identified as an essential factor in the reaction process, with the degradation rate of deltamethrin decreasing by up to 22% under anaerobic conditions. The presence of light facilitated the degradation of deltamethrin within the reaction system, while bicarbonate and natural organic compounds were found to inhibit its degradation. Quenching experiments verified the presence of hydroxyl radicals (HO•) and sulfate radicals (SO4•−) in the reaction system, with HO• being the predominant species. This was further confirmed by EPR experiments. Additionally, density functional theory calculations indicated the propensity for bond breaking between C16 and O21 in deltamethrin molecules, and the degradation pathway was validated through GC-MS analysis of the products formed. Moreover, the Fe (III)/sulfite system demonstrated good degradation performance for deltamethrin in secondary effluent, achieving degradation rates of 46.3%. In particular, the Fe (III)/sulfite system showed minimal bromate formation, attributed to the capacity of sulfite to reduce active bromine intermediates into bromine ions.

Funder

Natural Science Foundation of China

Yangtze River Joint Research Phase Ⅱ Program

Science, Technology and Innovation Commission of Shenzhen Municipality

PowerChina technology project

PowerChina Eco-environmental Group Co., Ltd. technology project

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3