Enhancing Feature Detection and Matching in Low-Pixel-Resolution Hyperspectral Images Using 3D Convolution-Based Siamese Networks

Author:

Perera Chamika Janith1ORCID,Premachandra Chinthaka2ORCID,Kawanaka Hiroharu1

Affiliation:

1. Graduate School of Engineering, Mie University, Tsu 514-0102, Japan

2. Department of Electrical Engineering and Computer Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan

Abstract

Today, hyperspectral imaging plays an integral part in the remote sensing and precision agriculture field. Identifying the matching key points between hyperspectral images is an important step in tasks such as image registration, localization, object recognition, and object tracking. Low-pixel resolution hyperspectral imaging is a recent introduction to the field, bringing benefits such as lower cost and form factor compared to traditional systems. However, the use of limited pixel resolution challenges even state-of-the-art feature detection and matching methods, leading to difficulties in generating robust feature matches for images with repeated textures, low textures, low sharpness, and low contrast. Moreover, the use of narrower optics in these cameras adds to the challenges during the feature-matching stage, particularly for images captured during low-altitude flight missions. In order to enhance the robustness of feature detection and matching in low pixel resolution images, in this study we propose a novel approach utilizing 3D Convolution-based Siamese networks. Compared to state-of-the-art methods, this approach takes advantage of all the spectral information available in hyperspectral imaging in order to filter out incorrect matches and produce a robust set of matches. The proposed method initially generates feature matches through a combination of Phase Stretch Transformation-based edge detection and SIFT features. Subsequently, a 3D Convolution-based Siamese network is utilized to filter out inaccurate matches, producing a highly accurate set of feature matches. Evaluation of the proposed method demonstrates its superiority over state-of-the-art approaches in cases where they fail to produce feature matches. Additionally, it competes effectively with the other evaluated methods when generating feature matches in low-pixel resolution hyperspectral images. This research contributes to the advancement of low pixel resolution hyperspectral imaging techniques, and we believe it can specifically aid in mosaic generation of low pixel resolution hyperspectral images.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3