Brownian Motion and Thermophoretic Effects in Mini Channels with Various Heights

Author:

Al Hajaj Zainab,Saghir Mohamad ZiadORCID

Abstract

Flow-through mini channels have received tremendous interest from researchers over a long period. However, the study of flow between the channel and on top of the channel has received little to no attention. In the present paper, different parameters have been used to investigate this heat enhancement. The height of 10 mini channels has been varied, allowing the corresponding aspect ratio to vary from 3 to 6, 9, and 12. When the aspect ratio is 12, flow circulates through the mini channel only, and when the aspect ratio is less than 12, flow is distributed between the one circulating inside the channel and moving on top of the channel. Different flow rates are studied corresponding to a Reynolds number varying from 250 to 1250 if water is the working fluid. Brownian and thermophoresis effects are taken into consideration to investigate the nanoparticle sedimentation. Results revealed that the optimum configuration, if one needs to take into consideration the friction factor, is 12. If one ignores the pressure drops, then the optimum configuration is when the aspect ratio is equal to 6. This means that the flow interaction between the one circulating in the channel and above the channel plays a major effect in heat removal.

Funder

Qatar Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3