Author:
Alnahari Ebrahim,Shi Hongbo
Abstract
Constrained optimization problems (COPs) are widely encountered in chemical engineering processes, and are normally defined by complex objective functions with a large number of constraints. Classical optimization methods often fail to solve such problems. In this paper, to solve COPs efficiently, a two-phase search method based on a heat transfer search (HTS) algorithm and a tandem running (TR) strategy is proposed. The main framework of the MHTS–TR method aims to alternate between a feasible search phase that only examines feasible solutions, using the HTS algorithm, and an infeasible search phase where the treatment of infeasible solutions is relaxed in a controlled manner, using the TR strategy. These two phases play different roles in the search process; the former ensures an intensified optimum in a relevant feasible region, whereas the latter is used to introduce more diversity into the former. Thus, the ensemble of these two complementary phases can provide an effective method to solve a wide variety of COPs. The proposed variant was investigated over 24 well-known constrained benchmark functions, and then compared with various well-established metaheuristic approaches. Furthermore, it was applied for solving a chemical COP. The promising results demonstrate that the MHTS–TR approach is applicable for solving real-world COPs.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering