Optimizing Camera Exposure Time for Automotive Applications

Author:

Lin Hao12ORCID,Mullins Darragh12ORCID,Molloy Dara123ORCID,Ward Enda3,Collins Fiachra3,Denny Patrick14ORCID,Glavin Martin12ORCID,Deegan Brian12ORCID,Jones Edward12

Affiliation:

1. School of Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland

2. Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland

3. Valeo Vision Systems, Tuam, Co., H54 Y276 Galway, Ireland

4. Computer Science and Information Systems (CSIS), Faculty of Science and Engineering, University of Limerick, Castletroy, V94 T9PX Limerick, Ireland

Abstract

Camera-based object detection is integral to advanced driver assistance systems (ADAS) and autonomous vehicle research, and RGB cameras remain indispensable for their spatial resolution and color information. This study investigates exposure time optimization for such cameras, considering image quality in dynamic ADAS scenarios. Exposure time, the period during which the camera sensor is exposed to light, directly influences the amount of information captured. In dynamic scenarios, such as those encountered in typical driving scenarios, optimizing exposure time becomes challenging due to the inherent trade-off between Signal-to-Noise Ratio (SNR) and motion blur, i.e., extending exposure time to maximize information capture increases SNR, but also increases the risk of motion blur and overexposure, particularly in low-light conditions where objects may not be fully illuminated. The study introduces a comprehensive methodology for exposure time optimization under various lighting conditions, examining its impact on image quality and computer vision performance. Traditional image quality metrics show a poor correlation with computer vision performance, highlighting the need for newer metrics that demonstrate improved correlation. The research presented in this paper offers guidance into the enhancement of single-exposure camera-based systems for automotive applications. By addressing the balance between exposure time, image quality, and computer vision performance, the findings provide a road map for optimizing camera settings for ADAS and autonomous driving technologies, contributing to safety and performance advancements in the automotive landscape.

Funder

Science Foundation Ireland

European Regional Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3