Optimization of Operational Parameters of Plant Protection UAV

Author:

Xing Wei1,Cui Yukang2,Wang Xinghao1,Shen Jun1

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

The operational parameters of plant protection unmanned aerial vehicles (UAVs) significantly impact spraying effectiveness, but the underlying mechanism remains unclear. This paper conducted a full factorial experiment with varying flight speeds, heights, and nozzle flow rates to collect parameter space data. Using the Kriging surrogate model, we characterized this parameter space and subsequently optimized the average deposition rate and coefficient of variation by employing a variable crossover (mutation) probability multi-objective genetic algorithm. In the obtained Pareto front, the average sedimentation rate is no less than 46%, with a maximum of 56.08%, and the CV coefficient is no more than 13.91%, with a minimum of only 8.42%. These optimized parameters enhance both the average deposition rate and spraying uniformity compared to experimental data. By employing these optimized parameters in practical applications, a balance between the maximum average deposition rate and minimum coefficient of variation can be achieved during UAV spraying, thereby reducing pesticide usage, promoting sustainable agriculture, and mitigating instances of missed spraying and re-spraying.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference22 articles.

1. Effect of adjuvant types and concentration on spray drift potential of different nozzles;Wang;Trans. Chin. Soc. Agric. Eng.,2015

2. Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV);Chen;Int. J. Agric. Biol. Eng.,2021

3. Electric propulsion system sizing methodology for an agriculture multicopter;Vu;Aerosp. Sci. Technol.,2019

4. Hu, P., Zhang, R., Yang, J., and Chen, L. (2022). Development status and key technologies of plant protection UAVs in China: A review. Drones, 6.

5. Current status and future trends of precision agricultural aviation technologies;Lan;Int. J. Agric. Biol. Eng.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3