Femtosecond Laser-Ablated Copper Surface as a Substrate for a MoS2-Based Hydrogen Evolution Reaction Electrocatalyst

Author:

Levinas RamūnasORCID,Grigucevičienė Asta,Kubilius Tadas,Matijošius Aidas,Tamašauskaitė-Tamašiūnaitė LoretaORCID,Cesiulis HenrikasORCID,Norkus EugenijusORCID

Abstract

One of the methods to improve the performance of a heterogeneous electrocatalyst is the dispersion of a catalytic material on a suitable substrate. In this study, femtosecond laser ablation was used to prepare very rough but also ordered copper surfaces consisting of vertical, parallel ridges. Then, a molybdenum sulfide coating was electrochemically deposited onto these surfaces. It was observed by profilometry that the average roughness of the surface after coating with MoS2 had decreased, but the developed surface area still remained significantly larger than the projected surface area. The electrodes were then used as an electrocatalyst for the hydrogen evolution reaction in acidic media. These were highly efficient, reaching 10 mA cm−2 of HER current at a −181 mV overpotential and a Tafel slope of ~39 mV dec−1. Additionally, scanning electrochemical microscopy was used to observe whether hydrogen evolution would preferentially occur in certain spots, for example, on the peaks, but the obtained results suggest that the entire surface is active. Finally, the electrochemical impedance spectroscopy data showed the difference in the double-layer capacitance between the ablated and non-ablated surfaces (up to five times larger) as well as the parameters that describe the improved catalytic activity of fs-Cu/MoS2 electrodes.

Funder

EU Horizon 2020 MSCA

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3