Numerical Simulation Study of Expanding Fracture of 45 Steel Cylindrical Shell under Different Detonation Pressure

Author:

Huang Zhenwei,Yu Xinlu

Abstract

Detonation and fragmentation of ductile cylindrical metal shells is a complicated physical phenomenon of material and structural fracture under a high strain rate and high-speed impact. In this article, the smoothed particle hydrodynamics (SPH) numerical model is adopted to study this problem. The model’s reliability is initially tested by comparing the simulation findings with experimental data, and it shows that different fracture modes of cylindrical shells can be obtained by using the same model with a unified constitutive model and failure parameters. By using this model to analyze the explosive fracture process of the cylindrical shells at various detonation pressures, it shows that when the detonation pressure decreases, the cylindrical metal shell fracture changes from a pure shear to tensile–shear mixed fracture. When the detonation pressure is above 31 GPA, a pure shear fracture appears in the shell during the loading stage of shell expansion, and the crack has an angle of 45° or 135° from the radial direction. When the pressure is reduced to 23 GPA, the fracture mode changes to tension–shear mixing, and the proportion of tensile cracks is about one-sixth of the shell fracture. With the explosion pressure reduced to 13 GPA, the proportion of tensile cracks is increased to about one-half of the shell fracture. Finally, the failure mechanism of the different fracture modes was analyzed under different detonation pressures by studying the stress and strain curves in the shells.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3