Studies of Selective Recovery of Zinc and Manganese from Alkaline Batteries Scrap by Leaching and Precipitation

Author:

Skrzekut TomaszORCID,Piotrowicz Andrzej,Noga PiotrORCID,Wędrychowicz MaciejORCID,Bydałek Adam W.

Abstract

Recovery of zinc and manganese from scrapped alkaline batteries were carried out in the following way: leaching in H2SO4 and selective precipitation of zinc and manganese by alkalization/neutralization. As a result of non-selective leaching, 95.6–99.7% Zn was leached and 83.7–99.3% Mn was leached. A critical technological parameter is the liquid/solid treatment (l/s) ratio, which should be at least 20 mL∙g−1. Selective leaching, which allows the leaching of zinc only, takes place with a leaching yield of 84.8–98.5% Zn, with minimal manganese co-leaching, 0.7–12.3%. The optimal H2SO4 concentration is 0.25 mol∙L−1. Precipitation of zinc and manganese from the solution after non-selective leaching, with the use of NaOH at pH = 13, and then with H2SO4 to pH = 9, turned out to be ineffective: the manganese concentrate contained 19.9 wt.% Zn and zinc concentrate, and 21.46 wt.% Mn. Better selectivity results were obtained if zinc was precipitated from the solution after selective leaching: at pH = 6.5, 90% of Zn precipitated, and only 2% manganese. Moreover, the obtained concentrate contained over 90% of ZnO. The precipitation of zinc with sodium phosphate and sodium carbonate is non-selective, despite its relatively high efficiency: up to 93.70% of Zn and 4.48–93.18% of Mn and up to 95.22% of Zn and 19.55–99.71% Mn, respectively for Na3PO4 and Na2CO3. Recovered zinc and manganese compounds could have commercial values with suitable refining processes.

Funder

Polish National Center for Research and Development,

Publisher

MDPI AG

Subject

General Materials Science

Reference42 articles.

1. A Review on Battery Market Trends, Second-Life Reuse, and Recycling

2. Global Batteries—Demand and Sales Forecasts, Market Share, Market Size, Market Leaders https://www.freedoniagroup.com/World-Batteries.html

3. Recycling batteries

4. Battery Waste Management;Kuchhal;Environ. Sci. Eng.,2017

5. Seek Medical Advice If Part or Whole of Battery Is Swallowed https://docs.rs-online.com/4172/0900766b8002747e.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3