Abstract
Recovery of zinc and manganese from scrapped alkaline batteries were carried out in the following way: leaching in H2SO4 and selective precipitation of zinc and manganese by alkalization/neutralization. As a result of non-selective leaching, 95.6–99.7% Zn was leached and 83.7–99.3% Mn was leached. A critical technological parameter is the liquid/solid treatment (l/s) ratio, which should be at least 20 mL∙g−1. Selective leaching, which allows the leaching of zinc only, takes place with a leaching yield of 84.8–98.5% Zn, with minimal manganese co-leaching, 0.7–12.3%. The optimal H2SO4 concentration is 0.25 mol∙L−1. Precipitation of zinc and manganese from the solution after non-selective leaching, with the use of NaOH at pH = 13, and then with H2SO4 to pH = 9, turned out to be ineffective: the manganese concentrate contained 19.9 wt.% Zn and zinc concentrate, and 21.46 wt.% Mn. Better selectivity results were obtained if zinc was precipitated from the solution after selective leaching: at pH = 6.5, 90% of Zn precipitated, and only 2% manganese. Moreover, the obtained concentrate contained over 90% of ZnO. The precipitation of zinc with sodium phosphate and sodium carbonate is non-selective, despite its relatively high efficiency: up to 93.70% of Zn and 4.48–93.18% of Mn and up to 95.22% of Zn and 19.55–99.71% Mn, respectively for Na3PO4 and Na2CO3. Recovered zinc and manganese compounds could have commercial values with suitable refining processes.
Funder
Polish National Center for Research and Development,
Subject
General Materials Science
Reference42 articles.
1. A Review on Battery Market Trends, Second-Life Reuse, and Recycling
2. Global Batteries—Demand and Sales Forecasts, Market Share, Market Size, Market Leaders
https://www.freedoniagroup.com/World-Batteries.html
3. Recycling batteries
4. Battery Waste Management;Kuchhal;Environ. Sci. Eng.,2017
5. Seek Medical Advice If Part or Whole of Battery Is Swallowed
https://docs.rs-online.com/4172/0900766b8002747e.pdf
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献