Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications

Author:

Jirimali Harishchandra,Singh Jyoti,Boddula Rajamouli,Lee Jung-Kul,Singh VijayORCID

Abstract

Carbon materials are versatile in nature due to their unique and modifiable surface and ease of production. Nanostructured carbon materials are gaining importance due to their high surface area for application in the energy, biotechnology, biomedical, and environmental fields. According to their structures, carbon allotropes are classified as carbon nanodots, carbon nanoparticles, graphene, oxide, carbon nanotubes, and fullerenes. They are synthesized via several methods, including pyrolysis, microwave method, hydrothermal synthesis, and chemical vapor deposition, and the use of renewable and cheaper agricultural feedstocks and reactants is increasing for reducing cost and simplifying production. This review explores the nanostructured carbon detailed investigation of sources and their relevant reports. Many of the renewable sources are covered as focused here, such as sugar cane waste, pineapple, its solid biomass, rise husk, date palm, nicotine tabacum stems, lapsi seed stone, rubber-seed shell, coconut shell, and orange peels. The main focus of this work is on the various methods used to synthesize these carbon materials from agricultural waste materials, and their important applications for energy storage devices, optoelectronics, biosensors, and polymer coatings.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3