Deep Learning-Based Intelligent Forklift Cargo Accurate Transfer System

Author:

Ren JieORCID,Pan YusuORCID,Yao PantaoORCID,Hu Yicheng,Gao Wang,Xue ZhenfengORCID

Abstract

In this research, we present an intelligent forklift cargo precision transfer system to address the issue of poor pallet docking accuracy and low recognition rate when using current techniques. The technology is primarily used to automatically check if there is any pallet that need to be transported. The intelligent forklift is then sent to the area of the target pallet after being recognized. Images of the pallets are then collected using the forklift’s camera, and a deep learning-based recognition algorithm is used to calculate the precise position of the pallets. Finally, the forklift is controlled by a high-precision control algorithm to insert the pallet in the exact location. This system creatively introduces the small target detection into the pallet target recognition system, which greatly improves the recognition rate of the system. The application of Yolov5 into the pallet positional calculation makes the coverage and recognition accuracy of the algorithm improved. In comparison with the prior approach, this system’s identification rate and accuracy are substantially higher, and it requires fewer sensors and indications to help with deployment. We have collected a significant amount of real data in order to confirm the system’s viability and stability. Among them, the accuracy of pallet docking is evaluated 1000 times, and the inaccuracy is kept to a maximum of 6 mm. The recognition rate of pallet recognition is above 99.5% in 7 days of continuous trials.

Funder

Zhejiang Province Science and Technology Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized Pallet Localization Using RGB-D Camera and Deep Learning Models;2023 IEEE 19th International Conference on Intelligent Computer Communication and Processing (ICCP);2023-10-26

2. Efficient Intelligence with Applications in Embedded Sensing;Sensors;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3