Benchmarking Automated Machine Learning (AutoML) Frameworks for Object Detection

Author:

Oliveira Samuel de1,Topsakal Oguzhan1ORCID,Toker Onur2

Affiliation:

1. Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA

2. Department of Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA

Abstract

Automated Machine Learning (AutoML) is a subdomain of machine learning that seeks to expand the usability of traditional machine learning methods to non-expert users by automating various tasks which normally require manual configuration. Prior benchmarking studies on AutoML systems—whose aim is to compare and evaluate their capabilities—have mostly focused on tabular or structured data. In this study, we evaluate AutoML systems on the task of object detection by curating three commonly used object detection datasets (Open Images V7, Microsoft COCO 2017, and Pascal VOC2012) in order to benchmark three different AutoML frameworks—namely, Google’s Vertex AI, NVIDIA’s TAO, and AutoGluon. We reduced the datasets to only include images with a single object instance in order to understand the effect of class imbalance, as well as dataset and object size. We used the metrics of the average precision (AP) and mean average precision (mAP). Solely in terms of accuracy, our results indicate AutoGluon as the best-performing framework, with a mAP of 0.8901, 0.8972, and 0.8644 for the Pascal VOC2012, COCO 2017, and Open Images V7 datasets, respectively. NVIDIA TAO achieved a mAP of 0.8254, 0.8165, and 0.7754 for those same datasets, while Google’s VertexAI scored 0.855, 0.793, and 0.761. We found the dataset size had an inverse relationship to mAP across all the frameworks, and there was no relationship between class size or imbalance and accuracy. Furthermore, we discuss each framework’s relative benefits and drawbacks from the standpoint of ease of use. This study also points out the issues found as we examined the labels of a subset of each dataset. Labeling errors in the datasets appear to have a substantial negative effect on accuracy that is not resolved by larger datasets. Overall, this study provides a platform for future development and research on this nascent field of machine learning.

Publisher

MDPI AG

Subject

Information Systems

Reference56 articles.

1. Mitchell, T. (1997). Machine Learning, McGraw Hill.

2. Machine Learning Techniques for Sentiment Analysis: A Review;Ahmad;Int. J. Multidiscip. Sci. Eng.,2017

3. Zheng, R., Qu, L., Cui, B., Shi, Y., and Yin, H. (2022). Automl for Deep Recommender Systems: A Survey. arXiv.

4. Machine Learning for Medical Diagnosis: History, State of the Art and Perspective;Kononenko;Artif. Intell. Med.,2001

5. Analysing Auto ML Model for Credit Card Fraud Detection;Garg;Int. J. Innov. Res. Comput. Sci. Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3