KEGGSum: Summarizing Genomic Pathways

Author:

David Chaim1,Kondylakis Haridimos2ORCID

Affiliation:

1. Department of Science & Technology, Hellenic Open University, 26335 Patra, Greece

2. Computer Science Department, University of Crete & FORTH-ICS, Vassilika Vouton, 70013 Heraklion, Greece

Abstract

Over time, the renowned Kyoto Encyclopedia of Genes and Genomes (KEGG) has grown to become one of the most comprehensive online databases for biological procedures. The majority of the data are stored in the form of pathways, which are graphs that depict the relationships between the diverse items participating in biological procedures, such as genes and chemical compounds. However, the size, complexity, and diversity of these graphs make them difficult to explore and understand, as well as making it difficult to extract a clear conclusion regarding their most important components. In this regard, we present KEGGSum, a system enabling the efficient and effective summarization of KEGG pathways. KEGGSum receives a KEGG identifier (Kid) as an input, connects to the KEGG database, downloads a specialized form of the pathway, and determines the most important nodes in the graph. To identify the most important nodes in the KEGG graphs, we explore multiple centrality measures that have been proposed for generic graphs, showing their applicability to KEGG graphs as well. Then, we link the selected nodes in order to produce a summary graph out of the initial KEGG graph. Finally, our system visualizes the generated summary, enabling an understanding of the most important parts of the initial graph. We experimentally evaluate our system, and we show its advantages and benefits.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Colorectal Cancer Detection via Metabolites and Machine Learning;Current Issues in Molecular Biology;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3