Influence of Temperature Reaction for the CdSe–TiO2 Nanotube Thin Film Formation via Chemical Bath Deposition in Improving the Photoelectrochemical Activity

Author:

Lai Chin WeiORCID,Samsudin Nurul Asma,Low Foo WahORCID,Abd Samad Nur Azimah,Lau Kung Shiuh,Chou Pui May,Tiong Sieh Kiong,Amin Nowshad

Abstract

In this present work, we report the deposition of cadmium selenide (CdSe) particles on titanium dioxide (TiO2) nanotube thin films, using the chemical bath deposition (CBD) method at low deposition temperatures ranging from 20 to 60 °C. The deposition temperature had an influence on the overall CdSe–TiO2 nanotube thin film morphologies, chemical composition, phase transition, and optical properties, which, in turn, influenced the photoelectrochemical performance of the samples that were investigated. All samples showed the presence of CdSe particles in the TiO2 nanotube thin film lattice structures with the cubic phase CdSe compound. The amount of CdSe loading on the TiO2 nanotube thin films were increased and tended to form agglomerates as a function of deposition temperature. Interestingly, a significant enhancement in photocurrent density was observed for the CdSe–TiO2 nanotube thin films deposited at 20 °C with a photocurrent density of 1.70 mA cm−2, which was 17% higher than the bare TiO2 nanotube thin films. This sample showed a clear surface morphology without any clogged nanotubes, leading to better ion diffusion, and, thus, an enhanced photocurrent density. Despite having the least CdSe loading on the TiO2 nanotube thin films, the CdSe–TiO2 nanotube thin films deposited at 20 °C showed the highest photocurrent density, which confirmed that a small amount of CdSe is enough to enhance the photoelectrochemical performance of the sample.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical Bath Deposition: Thin Films with Assorted Morphologies;Simple Chemical Methods for Thin Film Deposition;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3