Abstract
In this study, symmetrical films of BaFeO2.67, BaFeO2.33F0.33 and BaFeO2F were synthesized and the oxygen uptake and conduction was investigated by high temperature impedance spectroscopy under an oxygen atmosphere. The data were analyzed on the basis of an impedance model designed for highly porous mixed ionic electronic conducting (MIEC) electrodes. Variable temperature X-ray diffraction experiments were utilized to estimate the stability window of the oxyfluoride compounds, which yielded a degradation temperature for BaFeO2.33F0.33 of 590 °C and a decomposition temperature for BaFeO2F of 710 °C. The impedance study revealed a significant change of the catalytic behavior in dependency of the fluorine content. BaFeO2.67 revealed a bulk-diffusion limited process, while BaFeO2.33F0.33 appeared to exhibit a fast bulk diffusion and a utilization region δ larger than the electrode thickness L (8 μm). In contrast, BaFeO2F showed very area specific resistances due to the lack of oxygen vacancies. The activation energy for the uptake and conduction process of oxygen was found to be 0.07/0.29 eV (temperature range-dependent), 0.33 eV and 0.67 eV for BaFeO2.67, BaFeO2.33F0.33 and BaFeO2F, respectively.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献