Classification of Heart Sounds Based on the Wavelet Fractal and Twin Support Vector Machine

Author:

Li JinghuiORCID,Ke Li,Du Qiang

Abstract

Heart is an important organ of human beings. As more and more heart diseases are caused by people’s living pressure or habits, the diagnosis and treatment of heart diseases also require technical improvement. In order to assist the heart diseases diagnosis, the heart sound signal is used to carry a large amount of cardiac state information, so that the heart sound signal processing can achieve the purpose of heart diseases diagnosis and treatment. In order to quickly and accurately judge the heart sound signal, the classification method based on Wavelet Fractal and twin support vector machine (TWSVM) is proposed in this paper. Firstly, the original heart sound signal is decomposed by wavelet transform, and the wavelet decomposition coefficients of the signal are extracted. Then the two-norm eigenvectors of the heart sound signal are obtained by solving the two-norm values of the decomposition coefficients. In order to express the feature information more abundantly, the energy entropy of the decomposed wavelet coefficients is calculated, and then the energy entropy characteristics of the signal are obtained. In addition, based on the fractal dimension, the complexity of the signal is quantitatively described. The box dimension of the heart sound signal is solved by the binary box dimension method. So its fractal dimension characteristics can be obtained. The above eigenvectors are synthesized as the eigenvectors of the heart sound signal. Finally, the twin support vector machine (TWSVM) is applied to classify the heart sound signals. The proposed algorithm is verified on the PhysioNet/CinC Challenge 2016 heart sound database. The experimental results show that this proposed algorithm based on twin support vector machine (TWSVM) is superior to the algorithm based on support vector machine (SVM) in classification accuracy and speed. The proposed algorithm achieves the best results with classification accuracy 90.4%, sensitivity 94.6%, specificity 85.5% and F1 Score 95.2%.

Funder

Nature Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3