Winery Wastewater Treatment by Microalgae to Produce Low-Cost Biomass for Energy Production Purposes

Author:

Spennati ElenaORCID,Casazza Alessandro AlbertoORCID,Converti AttilioORCID

Abstract

Even though biofuel production from microalgae has become more and more attractive in recent years, it is limited especially by the high cost of microalgae cultivation. However, microalgae can be grown in wastewater in order to reduce their production cost and, at the same time, the polluting impact of wastewaters. Winery wastewaters, which are abundantly released from the wine making process, have a large pollution impact related to their high loads of total solids, chemical oxygen demand (COD) and polyphenol concentration. In this research work a co-culture of Chlorella vulgaris and Arthrospira platensis was used to treat three different winery wastewaters from different steps of the wine production process, in order to produce low-cost biomass intended for biofuel production. Growth of the co-culture and reduction of wastewater pollutant impact were followed by daily determinations of biomass concentration, COD and polyphenol content. The highest productivities of biomass (0.66 gDry Weight/L·day) and lipids (7.10 ± 0.22 gLipid/100 L·day) were obtained using 20% of second washing winery wastewater after 4 days of treatment. Moreover, COD and polyphenol content of the three different wastewaters were reduced by the co-culture by more than 92% and 50%, respectively. These results suggest that winery wastewaters can be used successfully for the growth of A. platensis and C. vulgaris co-culture in order to obtain inexpensive biomass for energy production purposes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3