Design Evaluation for a Finned-Tube CO2 Gas Cooler in Residential Applications

Author:

Alexopoulos Charalampos,Aljolani OsamaORCID,Heberle Florian,Roumpedakis Tryfon C.,Brüggemann Dieter,Karellas Sotirios

Abstract

Towards the introduction of environmentally friendlier refrigerants, CO2 cycles have gained significant attention in cooling and air conditioning systems in recent years. In this context, a design procedure for an air finned-tube CO2 gas cooler is developed. The analysis aims to evaluate the gas cooler design incorporated into a CO2 air conditioning system for residential applications. Therefore, a simulation model of the gas cooler is developed and validated experimentally by comparing its overall heat transfer coefficient. Based on the model, the evaluation of different numbers of rows, lengths, and diameters of tubes, as well as different ambient temperatures, are conducted, identifying the most suitable design in terms of pressure losses and required heat exchange area for selected operational conditions. The comparison between the model and the experimental results showed a satisfactory convergence for fan frequencies from 50 to 80 Hz. The absolute average deviations of the overall heat transfer coefficient for fan frequencies from 60 to 80 Hz were approximately 10%. With respect to the gas cooler design, a compromise between the bundle area and the refrigerant pressure drop was necessary, resulting in a 2.11 m2 bundle area and 0.23 bar refrigerant pressure drop. In addition, the analysis of the gas cooler’s performance in different ambient temperatures showed that the defined heat exchanger operates properly, compared to other potential gas cooler designs.

Funder

Bavarian State Ministry of Environment and Consumer Protection

Onassis Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming,2017

2. Council of the European Union Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006;Schulz;Off. J. Eur. Union,2014

3. General Office of the State Council. China State Council 2014–2015 Energy Conservation, Emissions Reduction and Low Carbon Development Action Plan,2014

4. California Air Resources Board Draft Short-Lived Climate Pollutant Reduction Strategy,2015

5. Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3