Author:
Zhou Zhenfeng,Yi Qiujie,Wang Ruihao,Wang Guang,Ma Chunyuan
Abstract
The cooling effect of room-temperature oxygen in oxygen blast furnaces with top gas recycling (TGR-OBF) delays the coal combustion process. To further explore the oxygen–coal combustion mechanism and intensify coal combustion in TGR-OBF, the effect of oxygen temperature on coal combustion was investigated using computational fluid dynamics (CFD). A three-dimensional model was developed to simulate the lance–blowpipe–tuyere–raceway of TGR-OBF. The effect of oxygen temperature at the same oxygen velocity and mass flow on coal combustion was investigated. Results showed the cooling effect of room-temperature oxygen was weakened, and the coal burnout was greatly increased with the increase in oxygen temperature. In particular, the coal burnout increased from 21.64% to 81.98% at the same oxygen velocity when the oxygen temperature increased from 300 to 500 K. The results provide useful reference for the development of TGR-OBF and coal combustion technology.
Funder
Natural Science Foundation of Shandong Province
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献