Identifying Challenges to 3D Hydrodynamic Modeling for a Small, Stratified Tropical Lake in the Philippines

Author:

Duka Maurice Alfonso1ORCID,Monterey Malone Luke E.1ORCID,Casim Niño Carlo I.1ORCID,Andres Jake Henson R.1ORCID,Yokoyama Katsuhide2ORCID

Affiliation:

1. Land and Water Resources Engineering Division, IABE, CEAT, University of the Philippines Los Baños, Laguna 4031, Philippines

2. Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

Abstract

Three-dimensional hydrodynamic modeling for small, stratified tropical lakes in the Philippines and in Southeast Asia in general is not deeply explored. This study pioneers investigating the hydrodynamics of a small crater lake in the Philippines with a focus on temperature simulation using a Fantom Refined 3D model that has been tested mostly for temperate and sub-tropical lakes. The lake’s monthly temperature during the dry season served as a reference for the model’s initial condition and validation. For the simulation to proceed, input data such as weather, inflow, and bathymetry were prepared. In the absence of hourly meteorological data from local weather stations, this paper adopted the satellite weather data from Solcast. Simple correlation analysis of daily weather data between local stations and Solcast showed valid and acceptable results. Inflow values were estimated using the rational method while the stream temperature was estimated from a regression equation using air temperatures as input. The validated satellite-derived data and runoff model can therefore be employed for 3D modeling. The simulations resulted in extremely higher temperatures compared with those observed when using previous default model settings. Direct modifications were then applied to weather parameters, compromising their integrity but resulting in reasonable profiles. By adding scaling factors to heat flux equations and multiplying their components by 0.75 (shortwave), 1.35 (longwave), 0.935 (air temperature), and 0.80 (wind), better results were achieved. This study identifies several challenges in performing 3D hydrodynamic modeling, such as paucity in input hydro-meteorologic and limnologic data and the need for heat flux model improvement. Overall, this study was successful in employing 3D hydrodynamic modeling in a tropical lake, which can pave directions and serve as an excellent reference for future modeling in the same region.

Funder

UP ECWRG

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3