Abstract
Quantifying the characteristics of urban expansion as well as influencing factors is essential for the simulation and prediction of urban expansion. In this study, we extracted the built-up regions of 14 central cities in the Hunan province using the DMSP-OLS night light remote sensing datasets from 1992 to 2018, and evaluated the spatial and temporal characteristics of the built-up regions in terms of the area, expansion speed, and main expansion direction. The backpropagation (BP) neural network and autoregressive integrated moving average (ARIMA) model were used to predict the area of the built-up regions from 2019 to 2026. The model predictions were based on the GDP, ratio of the secondary industry output to the GDP, ratio of the tertiary industry output to the GDP, year-end urban population, and urban road area. The results demonstrated that the built-up area and expansion speed of the central cities in the eastern part of the Hunan province were significantly higher than those in the western part. The main expansion directions of the 14 central cities were east and south. The urban road area, year-end urban population, and GDP were the main driving factors of the expansion. The urban expansion model based on the BP neural network provided a high prediction accuracy (R = 0.966). It was estimated that the total area of urban built-up regions in the Hunan province will reach 2463.80 km2 by 2026. These findings provide a new perspective for predicting urban areas rapidly and simply, and it also provides a useful reference for studying the spatial expansion characteristics of central cities and formulating a sustainable urban development strategy during the 14th Five-Year Plan of China.
Funder
National Natural Science Foundation of China
Outstanding Youth Project of Hunan Provincial Education Department
Natural Sciences and Engineering Research Council
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献