A Laboratory Approach to Measure Enhanced Gas Recovery from a Tight Gas Reservoir during Supercritical Carbon Dioxide Injection

Author:

Syah RahmadORCID,Alizadeh Seyed Mehdi,Nurgalieva Karina ShamilyevnaORCID,Grimaldo Guerrero John William,Nasution Mahyuddin K. M.ORCID,Davarpanah AfshinORCID,Ramdan Dadan,Metwally Ahmed Sayed M.ORCID

Abstract

Supercritical carbon dioxide injection in tight reservoirs is an efficient and prominent enhanced gas recovery method, as it can be more mobilized in low-permeable reservoirs due to its molecular size. This paper aimed to perform a set of laboratory experiments to evaluate the impacts of permeability and water saturation on enhanced gas recovery, carbon dioxide storage capacity, and carbon dioxide content during supercritical carbon dioxide injection. It is observed that supercritical carbon dioxide provides a higher gas recovery increase after the gas depletion drive mechanism is carried out in low permeable core samples. This corresponds to the feasible mobilization of the supercritical carbon dioxide phase through smaller pores. The maximum gas recovery increase for core samples with 0.1 mD is about 22.5%, while gas recovery increase has lower values with the increase in permeability. It is about 19.8%, 15.3%, 12.1%, and 10.9% for core samples with 0.22, 0.36, 0.54, and 0.78 mD permeability, respectively. Moreover, higher water saturations would be a crucial factor in the gas recovery enhancement, especially in the final pore volume injection, as it can increase the supercritical carbon dioxide dissolving in water, leading to more displacement efficiency. The minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it is about 38% for tight core samples with the permeability of 0.78 mD. By decreasing water saturation from 0.65 to 0.15, less volume of supercritical carbon dioxide is involved in water, and therefore, carbon dioxide storage capacity increases. This is indicative of a proper gas displacement front in lower water saturation and higher gas recovery factor. The findings of this study can help for a better understanding of the gas production mechanism and crucial parameters that affect gas recovery from tight reservoirs.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3