Prediction of the Change Points in Stock Markets Using DAE-LSTM

Author:

Yoo Sanghyuk,Jeon Sangyong,Jeong SeunghwanORCID,Lee HeesooORCID,Ryou Hosun,Park Taehyun,Choi Yeonji,Oh KyongjooORCID

Abstract

Since the creation of stock markets, there have been attempts to predict their movements, and new prediction methodologies have been devised. According to a recent study, when the Russell 2000 industry index starts to rise, stocks belonging to the corresponding industry in other countries also rise accordingly. Based on this empirical result, this study seeks to predict the start date of industry uptrends using the Russell 2000 industry index. The proposed model in this study predicts future stock prices using a denoising autoencoder (DAE) long short-term memory (LSTM) model and predicts the existence and timing of future change points in stock prices through Pettitt’s test. The results of the empirical analysis confirmed that this proposed model can find the change points in stock prices within 7 days prior to the start date of actual uptrends in selected industries. This study contributes to predicting a change point through a combination of statistical and deep learning models, and the methodology developed in this study could be applied to various financial time series data for various purposes.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3