Recycling Waste Classification Using Vision Transformer on Portable Device

Author:

Huang Kai,Lei HuanORCID,Jiao ZeyuORCID,Zhong Zhenyu

Abstract

Recycling resources from waste can effectively alleviate the threat of global resource strain. Due to the wide variety of waste, relying on manual classification of waste and recycling recyclable resources would be costly and inefficient. In recent years, automatic recyclable waste classification based on convolutional neural network (CNN) has become the mainstream method of waste recycling. However, due to the receptive field limitation of the CNN, the accuracy of classification has reached a bottleneck, which restricts the implementation of relevant methods and systems. In order to solve the above challenges, in this study, a deep neural network architecture only based on self-attention mechanism, named Vision Transformer, is proposed to improve the accuracy of automatic classification. Experimental results on TrashNet dataset show that the proposed method can achieve the highest accuracy of 96.98%, which is better than the existing CNN-based method. By deploying the well-trained model on the server and using a portable device to take pictures of waste in order to upload to the server, automatic waste classification can be expediently realized on the portable device, which broadens the scope of application of automatic waste classification and is of great significance with respect to resource conservation and recycling.

Funder

GDAS’ Project of Science and Technology Development

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chasing Pelican based Deep Learning for Multiple Object Detection from Single Input Trash Image;Multimedia Tools and Applications;2024-07-11

2. Sustainable Waste Management with AI: Waste Classification Using Deep Learning and IoT-Based Analysis of CH4 Production;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22

3. Research on automatic classification method of artistic styles based on attention mechanism convolutional neural network;International Journal of Low-Carbon Technologies;2024

4. Raspberry Pi-based design of intelligent household classified garbage bin;Internet of Things;2023-12

5. Design of Household Robotic Arm System to sort Recyclable Resources based on Deep Learning;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3