Analyzing Groups of Inpatients’ Healthcare Needs to Improve Service Quality and Sustainability

Author:

Hsu Ming-Hsia,Chen Chia-MeiORCID,Juang Wang-Chuan,Cai Zheng-Xun,Kuo Tsuang

Abstract

The trend towards personalized healthcare has led to an increase in applying deep learning techniques to improve healthcare service quality and sustainability. With the increasing number of patients with multiple comorbidities, they need comprehensive care services, where comprehensive care is a synonym for complete patient care to respond to a patient’s physical, emotional, social, economic, and spiritual needs, and, as such, an efficient prediction system for comprehensive care suggestions could help physicians and healthcare providers in making clinical judgement. The experiment dataset contained a total of 2.9 million electrical medical records (EMRs) from 250 thousand hospitalized patients collected retrospectively from a first-tier medical center in Taiwan, where the EMRs were de-identified and anonymized and where 949 cases had received comprehensive care. Recurrent neural networks (RNNs) are designed for analyzing time-series data but are still lacking in studying predicting personalized healthcare. Furthermore, in most cases, the collected evaluation data are imbalanced with a small portion of positive cases. This study examined the impact of imbalanced data in model training and suggested an effective approach to handle such a situation. To address the above-mentioned research issue, this study analyzed the care need in the different patient groupings, proposed a personalized care suggestion system by applying RNN models, and developed an efficient model training scheme for building AI-assisted prediction models. This study observed several findings: (1) the data resampling schemes could mitigate the impact of imbalanced data on model training, and the under-sampling scheme achieved the best performance with an ACC of 99.80%, a PPV of 70.18%, an NPV of 99.87%, a recall of 82.91%, and an F1 score of 0.7602, while the model trained with the original data had a very low PPV of 6.42% and a low F1 score of 0.1116; (2) patient clustering with multi-classier could predict comprehensive care needs efficiently with an ACC of 99.87%, a PPV of 77.90%, an NPV of 99.90%, a recall of 92.19%, and an F1 score of 0.8404; (3) the proposed long short-term memory (LSTM) prediction model achieved the best overall performance with an ACC of 99.80%, a PPV of 70.18%, an NPV of 99.87%, a recall of 82.91%, and an F1 score of 0.7602.

Funder

Kaohsiung Veterans General Hospital

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference45 articles.

1. Planning for the sustainability of community-based health programs: conceptual frameworks and future directions for research, practice and policy

2. Improvement Leaders’ Guidehttps://www.england.nhs.uk/improvement-hub/wp-content/uploads/sites/44/2017/11/ILG-1.7-Sustainability-and-its-Relationship-with-Spread-and-Adoption.pdf

3. A concept analysis of holistic care by hybrid model

4. A Definition of Comprehensive Medicine

5. Personalized Care in 2021: In-Depth Guidehttps://research.aimultiple.com/personalized-care/#:~:text=Personalized%20healthcare%20is%20the%20process,them%20personalized%20care%20and%20treatments.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3