Farmers’ Awareness in the Context of Climate Change: An Underutilized Way for Ensuring Sustainable Farmland Adaptation and Surface Water Quality

Author:

Awad AhmedORCID,Luo Wan,Al-Ansari NadhirORCID,Elbeltagi AhmedORCID,El-Rawy MustafaORCID,Farres Hesham N.,Gabr Mohamed EL-Sayed

Abstract

Simulations using the Crop Water and Irrigation Requirements model (CROPWAT), show that the projected climatic changes over the period from 2026 to 2050 in the Yanyun irrigation district, Yangzhou, China, will cause the paddy lands there to lose about 12.4% to 37.4%, and 1.6% to 45.6%, of their future seasonal rainwater in runoff under the Representative Concentration Pathways (RCP45 and RCP85), respectively. This may increase future irrigation requirements (IRs), alongside threatening the quality of adjacent water bodies. The CROPWAT simulations were re-run after increasing the Surface Storage Capacity (SSC) of the land by 50% and 100% of its baseline value. The results state that future rainwater runoff will be reduced by up to 76% and 100%, and 53% and 100% when the SSC is increased by 50% and 100%, under RCP45 and RCP85, respectively. This mitigates the future increase in IRs (e.g., under RCP45, up to about 11% and 16% of future IRs will be saved when increasing the SSC by 50% and 100%, respectively), thus saving the adjacent water bodies from the contaminated runoff from these lands. Adjusting the SSC of farmlands is an easy physical approach that can be practiced by farmers, and therefore educating them on how to follow up the rainfall forecast and then adjust the level of their farmlands’ boundaries according to these forecasts may help in the self-adaptation of vast areas of farmlands to climate change. These findings will help water users conserve agricultural water resources (by mitigating the future increase in IRs) alongside ensuring better quality for adjacent water bodies (by decreasing future runoff from these farmlands). Increasing farmers’ awareness, an underutilized approach, is a potential tool for ensuring improved agricultural circumstances amid projected climate changes and preserving the available water resources.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3