Numerical and Experimental Investigation of a Thermoelectric-Based Radiant Ceiling Panel with Phase Change Material for Building Cooling Applications

Author:

Seyednezhad Mohadeseh,Najafi Hamidreza,Kubwimana BenjaminORCID

Abstract

The present paper investigates the performance of a thermoelectric (TE)-based radiant ceiling panel with an additional layer of phase change material (PCM) for building cooling application through numerical and experimental analyses. The design of the ceiling panel consisted of an aluminum sheet with TE modules installed on the back to maintain a relatively low ceiling temperature that provided cooling through radiation and convection. A three-dimensional model was developed in COMSOL Multiphysics, and the system’s performance in several different configurations was assessed. The effect of the number of TE modules, as well as incorporating different amounts of PCM under transient conditions, was investigated for two modes of operation: startup and shutdown. It was shown that for a 609.6 mm × 609.6 mm ceiling panel, the use of four TE modules reduced the average surface temperature down to the comfort range in less than 5 min while producing a relatively uniform temperature distribution across the ceiling panel. It was also shown that the addition of a 2 mm thick PCM layer to the back of the ceiling panel enhanced the system’s performance by elongating the time that it took for the ceiling panel’s temperature to exceed the comfort range when the system shut down, which in turn reduced the number of on/off cycling of the system. The numerical results demonstrated a good agreement with the experimental data. The results from this study can be used for the optimal design of a TE-based radiant ceiling cooling system as a promising technology for smart buildings.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3