Re-Use of Silico-Manganese Slag

Author:

Buruiana Daniela LauraORCID,Obreja Cristian-Dragos,Herbei Elena EmanuelaORCID,Ghisman VioricaORCID

Abstract

The world’s rapidly growing demand for raw manganese has made it increasingly important to develop methods for the economic recovery of manganese from secondary sources. The current study aims to present possible ways for the recycling and reuse of silico-manganese slag landfilled in Tulcea, City on the Danube River close to the Danube Delta Biosphere Reserve in order to save the natural resources raw of manganese. In the last three decades, the ferroalloy production plant has over 2.6 million tons of slag. Slag dumping constitutes a significant source of air, water and soil pollution, which adversely affects the environment and human health. Mn present in the slag dump is an environmental pollutant with potentially toxic effects. The results obtained with a leaching method to recover manganese from slag shows two efficient ways to valorize manganese from solid fraction (54%) with size particles between 80 and 315 µm and/or reuse the leaching medium (56% Mn) with a slag size of <80 µm. The motivation of our research is the possibility to recover manganese from slag by saving natural resources of raw of manganese and the remaining fraction can be used as aggregate sources (construction and road rehabilitation by saving extract mineral aggregates and agriculture), in order to decommission the slag dump. The proposed research is in concordance with the sustainable use of natural resources for the achievement of sustainable development of the 2030 Agenda and Waste Management Legislation due of the huge ecological costs regarding non-conforming waste dumping. If we consider the cost-benefit analysis, the environmental future is more important the human health and the benefits on the quality of the population’s health and the environment which are not non-measurable in monetary value.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3