Abstract
In this work, an improved approach to enhance the training performance of an Artificial Neural Network (ANN) for prediction of the output of renewable energy systems is proposed. Using the proposed approach, a significant reduction of the Mean Squared Error (MSE) in training performance is achieved, specifically from 4.45 × 10−7 to 3.19 × 10−10. Moreover, a simplified application of the already trained ANN is introduced through which photovoltaic (PV) output can be predicted without the availability of real-time current weather data. Moreover, unlike the existing prediction models, which ask the user to apply multiple inputs in order to forecast power, the proposed model requires only the set of dates specifying forecasting period as the input for prediction purposes. Moreover, in the presence of the historical weather data this model is able to predict PV power for different time spans rather than only for a fixed period. The prediction accuracy of the proposed model has been validated by comparing the predicted power values with the actual ones under different weather conditions. To calculate actual power, the data were obtained from the National Renewable Energy Laboratory (NREL), USA and from the Universiti Teknologi Malaysia (UTM), Malaysia. It is envisaged that the proposed model can be easily handled by a non-technical user to assess the feasibility of the photovoltaic solar energy system before its installation.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献