The Measures of Accuracy of Claim Frequency Credibility Predictor

Author:

Wolny-Dominiak AlicjaORCID,Żądło TomaszORCID

Abstract

Nowadays, the sustainability risks and opportunities start to affect strongly insurance companies in regard to the resulting additional variability of future values of variables taken into account in the decision processes. This is important especially in the era of sustainable non-life insurance promoting, among others, the use of ecological car engines or ecological systems of building heating. The fundamental issue in non-life insurance is to predict future claims (e.g., the aggregate value of claims or the number of claims for a single policy) in a heterogeneous portfolio of policies taking account of claim experience. For this purpose, the so-called credibility theory is used, which was initiated by the fundamental Bühlmann model modified to the Bühlmann–Straub model. Several modifications of the model have been proposed in the literature. One of them is the development of the relationship between the credibility models and statistical mixed models (e.g., linear mixed models) for longitudinal data. The article proposes the use of the parametric bootstrap algorithm to estimate measures of accuracy of the credibility predictor of the number of claims for a single policy taking into account new risk factors resulting from the emergence of green technologies on the considered market. The predictor is obtained for the model which belongs to the class of Generalised Linear Mixed Models (GLMMs) and which is a generalization of the Bülmann–Straub model. Additionally, the possibility of predicting the number of claims and the problem of the assessment of the prediction accuracy are presented based on a policy characterized by new green risk factor (hybrid motorcycle engine) not previously present in the portfolio. The paper presents the proposed methodology in a case study using real insurance data from the Polish market.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3