Soil and Climate Characterization to Define Environments for Summer Crops in Senegal

Author:

Hernández Carlos Manuel,Faye AliouORCID,Ly Mamadou Ousseynou,Stewart Zachary P.ORCID,Vara Prasad P. V.ORCID,Bastos Leonardo MendesORCID,Nieto Luciana,Carcedo Ana J. P.,Ciampitti Ignacio AntonioORCID

Abstract

Investigating soil and climate variability is critical to defining environments for field crops, understanding yield-limiting factors, and contributing to the sustainability and resilience of agro-ecosystems. Following this rationale, the aim of this study was to develop a soil–climate characterization to describe environmental constraints in the Senegal summer-crops region. For the soil database, 825 soil samples were collected characterizing pH, electrical conductivity (EC), phosphorus (P), potassium (K), cation exchange capacity (CEC), and total carbon (C) and nitrogen (N). For the climate, monthly temperature, precipitation, and evapotranspiration layers were retrieved from WorldClim 2.1, CHIRPS and TERRACLIMATE. The same analysis was applied individually to both databases. Briefly, a principal component analysis (PCA) was executed to summarize the spatial variability. The outcomes from the PCA were subjected to a spatial fuzzy c-means algorithm, delineating five soil and three climate homogeneous areas, accounting for 73% of the soil and 88% of the climate variation. To our knowledge, no previous studies were done with large soil databases since availability field data is often limited. The use of soil and climate data allowed the characterization of different areas and their main drivers. The use of this classification will assist in developing strategic planning for future land use and capability classifications.

Funder

United States Agency for International Development

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference91 articles.

1. United Nations World Population Dashboard Senegalhttps://www.unfpa.org/data/world-population/SN

2. The Role of Livestock in Food Security, Poverty Reduction and Wealth Creation in West Africa;Molina-Flores,2020

3. Climate change and food security

4. Prioritizing Climate Change Adaptation Needs for Food Security in 2030

5. Warming increases the risk of civil war in Africa

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3