Author:
Zhang Zhenshi,Liu Huan,Wu Guohua
Abstract
Unmanned aerial vehicles are becoming promising platforms for disaster relief, such as providing emergency communication services in wireless sensor networks, delivering some living supplies, and mapping for disaster recovery. Dynamic task scheduling plays a very critical role in coping with emergent tasks. To solve the multi-UAV dynamic task scheduling, this paper constructs a multi-constraint mathematical model for multi-UAV dynamic task scheduling, involving task demands and platform capabilities. Three objectives are considered, which are to maximize the total profit of scheduled tasks, to minimize the time consumption, and to balance the number of scheduled tasks for multiple UAVs. The multi-objective problem is converted into single-objective optimization via the weighted sum method. Then, a novel dynamic task scheduling method based on a hybrid contract net protocol is proposed, including a buy-sell contract, swap contract, and replacement contract. Finally, extensive simulations are conducted under three scenarios with emergency tasks, pop-up obstacles, and platform failure to verify the superiority of the proposed method.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献