FGCN: Image-Fused Point Cloud Semantic Segmentation with Fusion Graph Convolutional Network

Author:

Zhang Kun1,Chen Rui1,Peng Zidong2,Zhu Yawei1,Wang Xiaohong1

Affiliation:

1. College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

2. College of International Education, Guangxi University of Science and Technology, Liuzhou 545006, China

Abstract

In interpreting a scene for numerous applications, including autonomous driving and robotic navigation, semantic segmentation is crucial. Compared to single-modal data, multi-modal data allow us to extract a richer set of features, which is the benefit of improving segmentation accuracy and effect. We propose a point cloud semantic segmentation method, and a fusion graph convolutional network (FGCN) which extracts the semantic information of each point involved in the two-modal data of images and point clouds. The two-channel k-nearest neighbors (KNN) module of the FGCN was created to address the issue of the feature extraction’s poor efficiency by utilizing picture data. Notably, the FGCN utilizes the spatial attention mechanism to better distinguish more important features and fuses multi-scale features to enhance the generalization capability of the network and increase the accuracy of the semantic segmentation. In the experiment, a self-made semantic segmentation KITTI (SSKIT) dataset was made for the fusion effect. The mean intersection over union (MIoU) of the SSKIT can reach 88.06%. As well as the public datasets, the S3DIS showed that our method can enhance data features and outperform other methods: the MIoU of the S3DIS can reach up to 78.55%. The segmentation accuracy is significantly improved compared with the existing methods, which verifies the effectiveness of the improved algorithms.

Funder

Department of Education of Hebei Province

Hebei Science and Technology Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3