Mathematical Modeling of Electrical Conductivity of Anisotropic Nanocomposite with Periodic Structure

Author:

Korchagin SergeyORCID,Pleshakova Ekaterina,Alexandrova Irina,Dolgov Vitaliy,Dogadina Elena,Serdechnyy Denis,Bublikov Konstantin

Abstract

Composite materials consisting of a dielectric matrix with conductive inclusions are promising in the field of micro- and optoelectronics. The properties of a nanocomposite material are strongly influenced by the characteristics of the substances included in its composition, as well as the shape and size of inclusions and the orientation of particles in the matrix. The use of nanocomposite material has significantly expanded and covers various systems. The anisotropic form of inclusions is the main reason for the appearance of optical anisotropy. In this article, models and methods describing the electrical conductivity of a layered nanocomposite of a self-similar structure are proposed. The method of modeling the electrical conductivity of individual blocks, layers, and composite as a whole is carried out similarly to the method of determining the dielectric constant. The advantage of the method proposed in this paper is the removal of restrictions imposed on the theory of generalized conductivity associated with the need to set the dielectric constant.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3