Towards Using Unsupervised Learning for Comparing Traditional and Synchronous Online Learning in Assessing Students’ Academic Performance

Author:

Maier Mariana-Ioana,Czibula GabrielaORCID,Oneţ-Marian Zsuzsanna-Edit

Abstract

Understanding students’ learning processes and education-related phenomena by extracting knowledge from educational data sets represents a continuous interest in the educational data mining domain. Due to an accelerated expansion of online learning and digitalisation in education, there is a growing interest in understanding the impact of online learning on the academic performance of students. In this study, we comparatively investigate traditional and synchronous online learning methods to assess students’ performance through the use of deep autoencoders. Experiments performed on real data sets collected in both online and traditional learning environments showed that autoencoders are able to detect hidden patterns in academic data sets unsupervised; these patterns are valuable for the prediction of students’ performance. The obtained results emphasized that, for the considered case studies, traditional evaluations are a little more accurate than online evaluations. Still, after applying a one-tailed paired Wilcoxon signed-rank test, no statistically significant difference between the traditional and online evaluations was observed.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3