Can Fake News Detection Models Maintain the Performance through Time? A Longitudinal Evaluation of Twitter Publications

Author:

Guimarães NunoORCID,Figueira ÁlvaroORCID,Torgo LuísORCID

Abstract

The negative impact of false information on social networks is rapidly growing. Current research on the topic focused on the detection of fake news in a particular context or event (such as elections) or using data from a short period of time. Therefore, an evaluation of the current proposals in a long-term scenario where the topics discussed may change is lacking. In this work, we deviate from current approaches to the problem and instead focus on a longitudinal evaluation using social network publications spanning an 18-month period. We evaluate different combinations of features and supervised models in a long-term scenario where the training and testing data are ordered chronologically, and thus the robustness and stability of the models can be evaluated through time. We experimented with 3 different scenarios where the models are trained with 15-, 30-, and 60-day data periods. The results show that detection models trained with word-embedding features are the ones that perform better and are less likely to be affected by the change of topics (for example, the rise of COVID-19 conspiracy theories). Furthermore, the additional days of training data also increase the performance of the best feature/model combinations, although not very significantly (around 2%). The results presented in this paper build the foundations towards a more pragmatic approach to the evaluation of fake news detection models in social networks.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference64 articles.

1. News Use Across Social Media Platforms in 2020: Facebook Stands Out as a Regular Source of News for about a Third of Americans. 2021. Volume 12https://www.pewresearch.org/journalism/2021/01/12/news-use-across-social-media-platforms-in-2020/

2. Soviet Bloc Intelligence and Its AIDS Disinformation Campaignhttps://upload.wikimedia.org/wikipedia/commons/b/b6/Operation_INFEKTION_-_Soviet_Bloc_Intelligence_and_Its_AIDS_Disinformation_Campaign.pdf

3. Are HIV/AIDS Conspiracy Beliefs a Barrier to HIV Prevention Among African Americans?

4. Do Blacks Believe That HIV/AIDS Is a Government Conspiracy against Them?

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3