A Novel Approach Combining Particle Swarm Optimization and Deep Learning for Flash Flood Detection from Satellite Images

Author:

Tuyen Do Ngoc,Tuan Tran ManhORCID,Son Le Hoang,Ngan Tran ThiORCID,Giang Nguyen Long,Thong Pham Huy,Hieu Vu Van,Gerogiannis Vassilis C.ORCID,Tzimos Dimitrios,Kanavos AndreasORCID

Abstract

Flood is one of the deadliest natural hazards worldwide, with the population affected being more than 2 billion between 1998–2017 with a lack of warning systems according to WHO. Especially, flash floods have the potential to generate fatal damages due to their rapid evolution and the limited warning and response time. An effective Early Warning Systems (EWS) could support detection and recognition of flash floods. Information about a flash flood can be mainly provided from observations of hydrology and from satellite images taken before the flash flood happens. Then, predictions from satellite images can be integrated with predictions based on sensors’ information to improve the accuracy of a forecasting system and subsequently trigger warning systems. The existing Deep Learning models such as UNET has been effectively used to segment the flash flood with high performance, but there are no ways to determine the most suitable model architecture with the proper number of layers showing the best performance in the task. In this paper, we propose a novel Deep Learning architecture, namely PSO-UNET, which combines Particle Swarm Optimization (PSO) with UNET to seek the best number of layers and the parameters of layers in the UNET based architecture; thereby improving the performance of flash flood segmentation from satellite images. Since the original UNET has a symmetrical architecture, the evolutionary computation is performed by paying attention to the contracting path and the expanding path is synchronized with the following layers in the contracting path. The UNET convolutional process is performed four times. Indeed, we consider each process as a block of the convolution having two convolutional layers in the original architecture. Training of inputs and hyper-parameters is performed by executing the PSO algorithm. In practice, the value of Dice Coefficient of our proposed model exceeds 79.75% (8.59% higher than that of the original UNET model). Experimental results on various satellite images prove the advantages and superiority of the PSO-UNET approach.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3