Electrochemical Treatment of Arsenic in Drinking Water: Effect of Initial As3+ Concentration, pH, and Conductivity on the Kinetics of Oxidation

Author:

Sorlini Sabrina1,Carnevale Miino Marco2ORCID,Lazarova Zdravka3,Collivignarelli Maria Cristina24ORCID

Affiliation:

1. Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy

2. Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy

3. AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria

4. Interdepartmental Centre for Water Research, University of Pavia, 27100 Pavia, Italy

Abstract

Many technologies for the treatment of arsenic-containing drinking water are available, but most of them are more effective on arsenic oxidized forms. Therefore, the pre-oxidation of As3+ is necessary. The electrochemical processes represent a very promising method due to the simultaneous oxidation of compounds using electrochemical conditions and the reactive radicals produced. In this work, As3+ oxidation was experimentally studied at a pilot scale using an electrochemical oxidation cell (voltage: 10 V; current: 1.7 A). The effect of the initial arsenite concentration, pH, and conductivity of drinking water on the oxidation of As3+ into As5+ was investigated. The results showed that the initial As3+ concentration strongly directly influences the oxidation process. Increasing the initial arsenite concentration from 500 to 5000 µg L−1, the pseudo-first order kinetic constant (k) strongly decreased from 0.521 to 0.038 min−1, and after 10 min, only 21.3% of As3+ was oxidized (vs. 99.9% in the case of As3+ equal to 500 µg L−1). Slightly alkaline conditions (pH = 8) favored the electrochemical oxidation into As5+, while the process was partially inhibited in the presence of a more alkaline or acidic pH. The increase in conductivity up to 2000 µS cm−1 enhanced the kinetic of the oxidation, despite remaining on the same order of magnitude as in the case of conductivity equal to 700 µS cm−1. After 10 min, 99.9 and 95% of As3+ was oxidized, respectively. It is the opinion of the authors that the influence of other operational factors, such as voltage and current density, and the impact of the high concentration of other pollutants should be deeply studied in order to optimize the process, especially in the case of an application at full scale. However, these results provide helpful indications to future research having highlighted the influence of initial As3+ concentration, pH, and conductivity on the electrochemical oxidation of arsenic.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3