Integration of Solar Process Heat in Industries: A Review

Author:

Tasmin NahinORCID,Farjana Shahjadi Hisan,Hossain Md Rashed,Golder Santu,Mahmud M. A. ParvezORCID

Abstract

Industrial manufacturing approaches are associated with processing materials that consume a significant amount of thermal energy, termed as industrial process heat. Industrial sectors consume a substantial amount of energy for process heating over a wide range of temperatures (up to 400 °C) from agriculture, HVAC to power plants. However, the intensive industrial application of fossil fuels causes unfavorable environmental effects that cannot be ignored. To address this issue, green energy sources have manifested their potential as economical and pollution-free energy sources. Nevertheless, the adoption of solar industrial process heating systems is still limited due to a lack of knowledge in the design/installation aspects, reluctance to experience the technical/infrastructural changes, low price of fossil fuels, and lack of relative incentives. For successful solar process heat integration in industries, a proper understanding of the associated design factors is essential. This paper comprehensively reviews the integration strategies of solar industrial process heating systems, appraisal of the integration points, different aspects of solar collectors, installed thermal power, and thermal storage volume covering case studies, reports and reviews. The integration aspects of solar process heat, findings, and obstacles of several projects from the literature are also highlighted. Finally, the integration locations of SHIP systems are compared for different industrial sectors to find out the most used integration point for a certain sector and operation. It was found that for the food, beverage, and agriculture sector, 51% of solar process heat integration occurs at the supply level and 27.3% at the process-level.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference91 articles.

1. State-of-the-Art of Solar Thermal Industrial Process Heat Technologies for Use In Developing Countries;Patil,1984

2. Solar Heat Worldwidehttps://www.iea-shc.org/solar-heat-worldwide

3. Solar industrial process heating: A review

4. International Energy Outlook 2016 With Projections to 2040

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3