Superhydrophobic Materials from Waste: Innovative Approach

Author:

Cannio Maria1,Boccaccini Dino Norberto1ORCID,Caporali Stefano23ORCID,Taurino Rosa23

Affiliation:

1. Resoh Solutions SRL, Via Pietro Guardini 476/N, 41124 Modena, Italy

2. Department of Industrial Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze, Italy

3. National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy

Abstract

Superhydrophobic materials, known for their exceptional water-repellent properties, have found widespread applications in diverse fields such as self-cleaning surfaces, anti-icing coatings, and water-resistant textiles. In recent years, researchers have explored a sustainable approach by repurposing waste materials to create superhydrophobic surfaces. This eco-friendly approach not only reduces environmental impact but also aligns with circular economy principles, contributing to a more sustainable future. Creating superhydrophobic materials from waste involves a combination of surface modification techniques and hierarchical structuring, with rigorous characterization to ensure the desired properties. These materials showcase their potential in various industries, opening doors to more environmentally friendly technologies. This review delves into the concept of superhydrophobic materials derived from waste and the methods used for their synthesis. It begins by defining superhydrophobicity and highlighting its unique characteristics. It emphasizes the pivotal role played by superhydrophobic materials across industries. The review then explores waste materials’ untapped potential, discussing the advantages of harnessing waste for superhydrophobic material development. Concrete examples of promising waste materials are provided, including agricultural residues and industrial byproducts. The review outlines five key sections that will be further developed to offer a comprehensive understanding of this innovative and sustainable approach to superhydrophobic materials.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3