Techno-Economic Assessment of IGCC Power Plants Using Gas Switching Technology to Minimize the Energy Penalty of CO2 Capture

Author:

Szima SzabolcsORCID,Arnaiz del Pozo Carlos,Cloete SchalkORCID,Fogarasi Szabolcs,Jiménez Álvaro ÁngelORCID,Cormos Ana-Maria,Cormos Calin-CristianORCID,Amini Shahriar

Abstract

Cost-effective CO2 capture and storage (CCS) is critical for the rapid global decarbonization effort recommended by climate science. The increase in levelized cost of electricity (LCOE) of plants with CCS is primarily associated to the large energy penalty involved in CO2 capture. This study therefore evaluates three high-efficiency CCS concepts based on integrated gasification combined cycles (IGCC): (1) gas switching combustion (GSC), (2) GSC with added natural gas firing (GSC-AF) to increase the turbine inlet temperature, and (3) oxygen production pre-combustion (OPPC) that replaces the air separation unit (ASU) with more efficient gas switching oxygen production (GSOP) reactors. Relative to a supercritical pulverized coal benchmark, these options returned CO2 avoidance costs of 37.8, 22.4 and 37.5 €/ton (including CO2 transport and storage), respectively. Thus, despite the higher fuel cost and emissions associated with added natural gas firing, the GSC-AF configuration emerged as the most promising solution. This advantage is maintained even at CO2 prices of 100 €/ton, after which hydrogen firing can be used to avoid further CO2 cost escalations. The GSC-AF case also shows lower sensitivity to uncertain economic parameters such as discount rate and capacity factor, outperforms other clean energy benchmarks, offers flexibility benefits for balancing wind and solar power, and can achieve significant further performance gains from the use of more advanced gas turbine technology. Based on all these insights, the GSC-AF configuration is identified as a promising solution for further development.

Funder

H2020 Environment

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference42 articles.

1. World Energy Outlookhttps://www.iea.org/reports/world-energy-outlook-2018

2. The Paris Agreement, n.d.https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

3. AR5 Synthesis Report: Climate Changehttps://www.ipcc.ch/report/ar5/syr/

4. Tracking Clean Energy Progresshttps://www.iea.org/topics/tracking-clean-energy-progress

5. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3